

Mine Dewatering Pumps

Mining/Mineral & Ore Processing — Extraction ARC 855, 858, and MX2 Coatings Case Study 023

Challenge

Issue

Mine production impacted by insufficient pump performance to meet required 300M³/hour flow.

Goals

- Avoid purchasing additional pumps with an acquisition cost of \$25K and operational cost of \$3.5K
- Meet flow demand and reduce maintenance and operational costs

Root Cause

After 20,000 hours operation in acidic mine water with entrained solids degraded pump internals and critical tolerances.

Bank of dewatering pumps

Solution

Preparation

Surfaces grit blasted to Sa 2.5 with 3 mil $(75 \mu m)$ angular profile.

Application

- Apply ARC 858, to rebuild pump back to tolerances where abrasion and erosion had damaged casing and impeller
- 2. Apply ARC MX2 in high wear regions to address abrasive suspended solids
- 3. Apply final topcoat of ARC 855 for additional corrosion protection and to improve flow efficiency

Pumps rebuilt with ARC 858 and ARC MX2. Top coated with ARC 855

Results

Inspection Results

After repair, pumps operated at >94% of OEM efficiency with 3% less energy consumed.

Cost Avoidance

New pump installation/operation \$28.50K

ARC material and labor -\$ 6.80K

Associated energy saving -\$ 3.29K

Total 1st year savings (per pump) \$18.41K

\$=USD

